\(\int \frac {x (a+b \text {arccosh}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\) [118]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 76 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {a+b \text {arccosh}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {-1+c x} \sqrt {1+c x} \text {arctanh}(c x)}{c^2 d \sqrt {d-c^2 d x^2}} \]

[Out]

(a+b*arccosh(c*x))/c^2/d/(-c^2*d*x^2+d)^(1/2)+b*arctanh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d/(-c^2*d*x^2+d)^
(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {5914, 35, 213} \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {a+b \text {arccosh}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {c x-1} \sqrt {c x+1} \text {arctanh}(c x)}{c^2 d \sqrt {d-c^2 d x^2}} \]

[In]

Int[(x*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a + b*ArcCosh[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2]) + (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcTanh[c*x])/(c^2*d*Sqrt[d
 - c^2*d*x^2])

Rule 35

Int[1/(((a_) + (b_.)*(x_))*((c_) + (d_.)*(x_))), x_Symbol] :> Int[1/(a*c + b*d*x^2), x] /; FreeQ[{a, b, c, d},
 x] && EqQ[b*c + a*d, 0]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 5914

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*
(-1 + c*x)^p)], Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a,
 b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {a+b \text {arccosh}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{(-1+c x) (1+c x)} \, dx}{c d \sqrt {d-c^2 d x^2}} \\ & = \frac {a+b \text {arccosh}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{-1+c^2 x^2} \, dx}{c d \sqrt {d-c^2 d x^2}} \\ & = \frac {a+b \text {arccosh}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {-1+c x} \sqrt {1+c x} \text {arctanh}(c x)}{c^2 d \sqrt {d-c^2 d x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.79 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=-\frac {a \sqrt {-d \left (-1+c^2 x^2\right )}}{c^2 d^2 \left (-1+c^2 x^2\right )}-\frac {b \sqrt {-d \left (-1+c^2 x^2\right )} \text {arccosh}(c x)}{c^2 d^2 \left (-1+c^2 x^2\right )}+\frac {b \sqrt {d-c^2 d x^2} (\log (-1+c x)-\log (1+c x))}{2 c^2 d^2 \sqrt {-1+c x} \sqrt {1+c x}} \]

[In]

Integrate[(x*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

-((a*Sqrt[-(d*(-1 + c^2*x^2))])/(c^2*d^2*(-1 + c^2*x^2))) - (b*Sqrt[-(d*(-1 + c^2*x^2))]*ArcCosh[c*x])/(c^2*d^
2*(-1 + c^2*x^2)) + (b*Sqrt[d - c^2*d*x^2]*(Log[-1 + c*x] - Log[1 + c*x]))/(2*c^2*d^2*Sqrt[-1 + c*x]*Sqrt[1 +
c*x])

Maple [A] (verified)

Time = 0.87 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.78

method result size
default \(\frac {a}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )-\sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (\sqrt {c x -1}\, \sqrt {c x +1}+c x -1\right )+\operatorname {arccosh}\left (c x \right )\right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}\) \(135\)
parts \(\frac {a}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )-\sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (\sqrt {c x -1}\, \sqrt {c x +1}+c x -1\right )+\operatorname {arccosh}\left (c x \right )\right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}\) \(135\)

[In]

int(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

a/c^2/d/(-c^2*d*x^2+d)^(1/2)-b*(-d*(c^2*x^2-1))^(1/2)*((c*x-1)^(1/2)*(c*x+1)^(1/2)*ln(1+c*x+(c*x-1)^(1/2)*(c*x
+1)^(1/2))-(c*x-1)^(1/2)*(c*x+1)^(1/2)*ln((c*x-1)^(1/2)*(c*x+1)^(1/2)+c*x-1)+arccosh(c*x))/d^2/c^2/(c^2*x^2-1)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 327, normalized size of antiderivative = 4.30 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\left [-\frac {4 \, \sqrt {-c^{2} d x^{2} + d} b \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) + {\left (b c^{2} x^{2} - b\right )} \sqrt {-d} \log \left (-\frac {c^{6} d x^{6} + 5 \, c^{4} d x^{4} - 5 \, c^{2} d x^{2} - 4 \, {\left (c^{3} x^{3} + c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} \sqrt {-d} - d}{c^{6} x^{6} - 3 \, c^{4} x^{4} + 3 \, c^{2} x^{2} - 1}\right ) + 4 \, \sqrt {-c^{2} d x^{2} + d} a}{4 \, {\left (c^{4} d^{2} x^{2} - c^{2} d^{2}\right )}}, -\frac {{\left (b c^{2} x^{2} - b\right )} \sqrt {d} \arctan \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} c \sqrt {d} x}{c^{4} d x^{4} - d}\right ) + 2 \, \sqrt {-c^{2} d x^{2} + d} b \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) + 2 \, \sqrt {-c^{2} d x^{2} + d} a}{2 \, {\left (c^{4} d^{2} x^{2} - c^{2} d^{2}\right )}}\right ] \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(-c^2*d*x^2 + d)*b*log(c*x + sqrt(c^2*x^2 - 1)) + (b*c^2*x^2 - b)*sqrt(-d)*log(-(c^6*d*x^6 + 5*c^
4*d*x^4 - 5*c^2*d*x^2 - 4*(c^3*x^3 + c*x)*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*sqrt(-d) - d)/(c^6*x^6 - 3*c^
4*x^4 + 3*c^2*x^2 - 1)) + 4*sqrt(-c^2*d*x^2 + d)*a)/(c^4*d^2*x^2 - c^2*d^2), -1/2*((b*c^2*x^2 - b)*sqrt(d)*arc
tan(2*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*c*sqrt(d)*x/(c^4*d*x^4 - d)) + 2*sqrt(-c^2*d*x^2 + d)*b*log(c*x +
 sqrt(c^2*x^2 - 1)) + 2*sqrt(-c^2*d*x^2 + d)*a)/(c^4*d^2*x^2 - c^2*d^2)]

Sympy [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int \frac {x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(x*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x*(a + b*acosh(c*x))/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

b*(((c*sqrt(d)*x + sqrt(c*x + 1)*sqrt(c*x - 1)*sqrt(d))*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/sqrt(-c*x + 1)
+ sqrt(c*x + 1)*sqrt(c*x - 1)*sqrt(d)/sqrt(-c*x + 1))/(sqrt(c*x + 1)*c^3*d^2*x + (c*x + 1)*sqrt(c*x - 1)*c^2*d
^2) - integrate((c^2*x^3 + c*x^2*e^(1/2*log(c*x + 1) + 1/2*log(c*x - 1)) - x)/(sqrt(-c*x + 1)*((c^2*d^(3/2)*x^
2 - d^(3/2))*e^(3/2*log(c*x + 1) + log(c*x - 1)) + 2*(c^3*d^(3/2)*x^3 - c*d^(3/2)*x)*e^(log(c*x + 1) + 1/2*log
(c*x - 1)) + (c^4*d^(3/2)*x^4 - c^2*d^(3/2)*x^2)*sqrt(c*x + 1))), x)) + a/(sqrt(-c^2*d*x^2 + d)*c^2*d)

Giac [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x/(-c^2*d*x^2 + d)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int \frac {x\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \]

[In]

int((x*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(3/2),x)

[Out]

int((x*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(3/2), x)